China high quality Daf 1449133 1736724 V- Belt Tensioner axle bolt

Product Description

Daf 1449133 1736724 V- Belt Tensioner

OEM:1449133 1736724

Ref no.: APV2543 FEBI 30397 CZPT T38571 CZPT 534015710 Ruville 58884

SIZE:78X30

Application:DAF CF 75

Product Parameters

OEM NO.

  1449133 1736724
  Application   DAF

Place of Origin

ZHangZhoug, China

Material

   Aluminium
  Product Name

Belt Tensioner

Reference NO.

 

Packing

Neutral Packing

SHIPPING TERM

Sea/Air

Quality

100%tested

Size

same as OEM

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Certification: CCC, ISO9001, TS16949
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

belt tensioner

Can you provide guidance on the selection and sizing of belt tensioners for specific belt applications?

When selecting and sizing belt tensioners for specific belt applications, several factors need to be considered to ensure optimal performance and longevity. Here’s a detailed guidance on the selection and sizing of belt tensioners:

  • Belt Type and Size:
  • Start by identifying the type and size of the belt used in the application. Belts can vary in terms of width, length, profile (V-belt, timing belt, etc.), and construction material (rubber, polyurethane, etc.). The tensioner should be compatible with the specific belt type and size to ensure proper fit and functionality.

  • System Requirements:
  • Consider the requirements of the belt-driven system. Evaluate factors such as the desired tension level, operating speed, load conditions, and environmental factors. The tensioner should be capable of providing the required tension force while accommodating the system’s operating parameters.

  • Tensioner Type:
  • Choose the appropriate tensioner type based on the application’s needs. Common types include automatic tensioners, idler pulley tensioners, spring-loaded tensioners, and hydraulic tensioners. Each type has its advantages and limitations, so select the one that best suits the specific belt application.

  • Tensioner Design and Mounting:
  • Consider the design and mounting requirements of the tensioner. Evaluate the space availability, mounting configuration, and alignment with other components in the belt drive system. Some tensioners offer adjustable mounting positions or different design variations to accommodate various installation scenarios.

  • Tensioner Load Capacity:
  • Check the load capacity of the tensioner to ensure it can handle the expected loads and forces in the belt system. Consider factors such as the belt tension, shock loads, and dynamic forces. The tensioner should have adequate load capacity to prevent premature wear or failure under normal operating conditions.

  • Environmental Considerations:
  • Assess the environmental conditions in which the tensioner will operate. Factors such as temperature extremes, moisture, dust, chemicals, and exposure to UV radiation can impact the tensioner’s performance and durability. Choose a tensioner that is designed to withstand the specific environmental challenges of the application.

  • Manufacturer Recommendations:
  • Refer to the manufacturer’s guidelines and recommendations for selecting and sizing the tensioner. Manufacturers often provide technical data, specifications, and selection guides that assist in choosing the appropriate tensioner for specific belt applications. Follow their recommendations to ensure compatibility and optimal performance.

It is important to note that the selection and sizing of belt tensioners may require technical expertise and consideration of specific application requirements. If in doubt, consult with belt tensioner manufacturers or industry experts who can provide further guidance based on their knowledge and experience.

In summary, when selecting and sizing belt tensioners for specific belt applications, consider the belt type and size, system requirements, tensioner type, design and mounting, load capacity, environmental conditions, and manufacturer recommendations. By carefully evaluating these factors, you can choose a suitable tensioner that ensures proper tensioning, reliable operation, and extended belt life in the belt-driven system.

belt tensioner

How do belt tensioners contribute to reducing vibrations and noise in machinery?

Belt tensioners play a significant role in reducing vibrations and noise in machinery. They contribute to the smooth operation of belt-driven systems by maintaining proper belt tension, which helps minimize dynamic belt movements and associated vibrations. Here’s a detailed explanation of how belt tensioners contribute to reducing vibrations and noise:

  • Stabilizing Belt Movement:
  • Proper tensioning of belts helps stabilize their movement during operation. When belts are under the correct tension, they are less likely to experience excessive lateral or longitudinal movements. These movements, known as belt flutter or belt whip, can cause vibrations and noise. Belt tensioners apply the necessary force to keep the belt properly tensioned, preventing excessive movement and reducing the generation of vibrations and associated noise.

  • Minimizing Belt Resonance:
  • Belt resonance refers to the phenomenon where a belt’s natural frequency coincides with the operating speed of the system, leading to excessive vibrations and noise. Proper belt tensioning helps to minimize belt resonance by ensuring that the belt operates within its stable tension range. By avoiding resonance conditions, belt tensioners contribute to a smoother operation, reducing vibrations and noise caused by belt resonance.

  • Damping Vibrations:
  • Belt tensioners can also act as vibration dampers. They absorb or dissipate some of the vibrations generated by the rotating components connected by the belt. The tensioner’s design may incorporate features such as dampening springs or rubber elements that help absorb and dampen vibrations. This damping effect reduces the transmission of vibrations through the belt, resulting in reduced overall vibration levels and associated noise.

  • Reducing Belt Slippage:
  • Improper tensioning can lead to belt slippage, where the belt slips on the pulleys or sheaves instead of maintaining a firm grip. Belt slippage generates friction and can cause vibrations and noise. Belt tensioners ensure that the belt remains properly tensioned, minimizing the risk of slippage and reducing associated vibrations and noise.

  • Minimizing Belt Flapping:
  • When belts are not properly tensioned, they can exhibit flapping or flailing movements, especially at higher speeds. These movements can generate vibrations and noise. Belt tensioners help maintain the correct tension, keeping the belt taut and preventing excessive flapping. By minimizing belt flapping, tensioners contribute to a smoother operation with reduced vibrations and noise.

  • Promoting Stable Rotational Motion:
  • A properly tensioned belt ensures stable rotational motion of the pulleys or sheaves it is driving. When belts are under the correct tension, they maintain a consistent grip on the pulleys, preventing sudden slips or variations in rotational motion. This stability in rotational motion helps minimize vibrations and associated noise, resulting in smoother and quieter machinery operation.

In summary, belt tensioners contribute to reducing vibrations and noise in machinery by stabilizing belt movement, minimizing belt resonance, damping vibrations, reducing belt slippage, minimizing belt flapping, and promoting stable rotational motion. By maintaining proper belt tension, tensioners help achieve smoother operation, reduce vibrations, and minimize the generation and transmission of noise, resulting in improved comfort, efficiency, and reliability of the machinery.

belt tensioner

How do belt tensioners differ from other components in maintaining belt tension?

Belt tensioners play a distinct role in maintaining belt tension compared to other components in belt drive systems. Here’s a detailed explanation of how belt tensioners differ from other components:

1. Tension Adjustment:

Belt tensioners are specifically designed to provide an adjustable means of maintaining the proper tension in the belt. They are equipped with mechanisms such as springs, adjustable arms, or brackets that allow for easy tension adjustment. Other components in belt drive systems, such as pulleys or idlers, do not have this specific functionality and rely on external means, such as manual adjustment or fixed positioning, to maintain tension.

2. Active Tension Control:

Belt tensioners actively control and apply force to the belt to maintain tension. They are designed to compensate for belt elongation, thermal expansion, and other factors that can affect tension over time. By applying the appropriate tension, belt tensioners help to prevent belt slippage and maintain efficient power transmission. In contrast, other components, such as fixed pulleys or idlers, do not actively control tension and rely on the initial tension set during installation.

3. Dynamic Tension Compensation:

Belt tensioners are capable of dynamically adjusting the tension in response to changes in operating conditions. For example, in automotive applications, belt tensioners can compensate for variations in engine speed, temperature fluctuations, and belt wear. They can adapt to these changes and maintain the optimal tension level. Other components, such as fixed pulleys or idlers, do not possess this dynamic tension adjustment capability.

4. Vibration and Noise Damping:

Belt tensioners often incorporate features to dampen vibrations and reduce noise in the belt drive system. They act as shock absorbers, absorbing and dissipating vibrations, which helps to minimize belt flutter and reduce noise levels. Other components, such as fixed pulleys or idlers, do not typically have built-in vibration and noise damping properties.

5. Positioning on Slack Side:

Belt tensioners are typically positioned on the slack side of the belt, between the driving pulley and the driven pulley. This positioning allows them to apply tension to the belt where it is needed most, helping to maintain proper engagement and prevent slippage. In contrast, other components, such as fixed pulleys or idlers, are positioned on the tight side of the belt and primarily serve to guide and support the belt.

6. Component Integration:

Belt tensioners are standalone components that are specifically designed for tensioning belts. They are often integrated into the belt drive system as a separate unit, allowing for easy installation, adjustment, and replacement. Other components, such as pulleys or idlers, serve different functions in the system and may be integrated into other mechanisms or structures.

In summary, belt tensioners differ from other components in belt drive systems in their ability to provide adjustable tension control, dynamic tension compensation, vibration and noise damping capabilities, specific positioning on the slack side of the belt, and as standalone components designed solely for tensioning belts. These features make belt tensioners essential for maintaining optimal tension and ensuring the efficient and reliable operation of belt drive systems.

China high quality Daf 1449133 1736724 V- Belt Tensioner   axle boltChina high quality Daf 1449133 1736724 V- Belt Tensioner   axle bolt
editor by CX 2024-04-22