Product Description
Product Description
Factory Wholesale Price Auto Accessories Car Engine Parts Alternator Belt Tensioner with Tensioner Pulley OEM 96362571 for Lancia Phedra Zeta
Water Pump for CITROEN
Water Pump for FIAT
Water Pump for LXIHU (WEST LAKE) DIS.A
Water Pump for PEUGEOT
All kinds of car water pumps can be produced for you. Welcome to your inquiry.
MIC NO. | REF&OEM NO | APPLICATION | YEAR | PHOTO |
TB34PG9901 | 957838 CITROEN : 575161 CITROEN : 96362074 FIAT : 96362571 LXIHU (WEST LAKE) DIS.A : 96362571 PEUGEOT : 575161 PEUGEOT : 96362074 |
CITROEN C4 Coupe (LA_) 2.0 16V CITROEN C4 I (LC_) 2.0 16V CITROEN C5 I (DC_) 1.8 16V (DC6FZB, DC6FZE) CITROEN C5 I (DC_) 2.0 16V (DCRFNC, DCRFNF) CITROEN C5 I Break (DE_) 1.8 16V (DE6FZB, DE6FZE) CITROEN C5 I Break (DE_) 2.0 16V (DERFNF, DERFNC, RERFNC) CITROEN C5 II (RC_) 1.8 16V (RC6FZB) CITROEN C8 (EA_, EB_) 2.0 CITROEN C8 (EA_, EB_) 2.2 CITROEN EVASION MPV (22, U6) 2.0 16V CITROEN JUMPY (U6U_) 2.0 CITROEN JUMPY Box (BS_, BT_, BY_, BZ_) 2.0 i 16V CITROEN JUMPY Platform/Chassis (BU_, BV_, BW_, BX_) 2.0 CITROEN XSARA (N1) 2.0 16V CITROEN XSARA Break (N2) 2.0 16V CITROEN XSARA PICASSO (N68) 1.8 16V CITROEN XSARA PICASSO (N68) 2.0 16V FIAT SCUDO Box (220_) 2.0 FIAT SCUDO Combinato (220_) 2.0 16V FIAT ULYSSE (179_) 2.0 (179BXA11, 179BXA1A) FIAT ULYSSE (220_) 2.0 16V (220AQ5) LXIHU (WEST LAKE) DIS.A PHEDRA (179_) 2.0 (179AXA11, 179AXA1A) LXIHU (WEST LAKE) DIS.A ZETA (22_) 2.0 16V (220AQ5, 220AQ4) PEUGEOT 206 CC (2D) 2.0 S16 PEUGEOT 206 Hatchback (2A/C) 2.0 S16 PEUGEOT 206 SW (2E/K) 2.0 16V PEUGEOT 307 (3A/C) 2.0 16V PEUGEOT 307 Break (3E) 2.0 PEUGEOT 307 CC (3B) 2.0 16V PEUGEOT 307 SW (3H) 2.0 16V PEUGEOT 406 (8B) 1.8 16V PEUGEOT 406 (8B) 2.0 16V PEUGEOT 406 (8B) 2.2 PEUGEOT 406 Break (8E/F) 1.8 16V PEUGEOT 406 Break (8E/F) 2.0 16V PEUGEOT 406 Break (8E/F) 2.2 PEUGEOT 406 Coupe (8C) 2.0 16V PEUGEOT 406 Coupe (8C) 2.2 PEUGEOT 407 (6D_) 1.8 PEUGEOT 407 (6D_) 2.0 PEUGEOT 407 (6D_) 2.2 PEUGEOT 407 Coupe (6C_) 2.2 16V PEUGEOT 407 SW (6E_) 1.8 PEUGEOT 407 SW (6E_) 2.0 PEUGEOT 407 SW (6E_) 2.2 PEUGEOT 607 (9D, 9U) 2.0 PEUGEOT 607 (9D, 9U) 2.2 16V PEUGEOT 806 (221) 2.0 16V PEUGEOT 807 (E) 2.0 PEUGEOT 807 (E) 2.2 PEUGEOT EXPERT (224_) 2.0 |
2004-2007 2004-2007 2001-2004 2001-2004 2001-2004 2001-2004 2004- 2002- 2002- 2000-2002 2000-2006 2000-2006 2003-2006 2000-2005 2000-2005 2000-2005 2003-2012 2000-2006 2000-2006 2002-2011 2000-2002 2002-2571 2000-2002 2000-2007 1999-2000 2002-2007 2000-2005 2002-2005 2003-2005 2002-2005 2000-2004 2000-2004 2000-2004 2000-2004 2000-2004 2000-2004 1999-2000 2002-2004 2004-2005 2004-2005 2004-2006 2005- 2004-2005 2004-2005 2004-2005 2000-2005 2000-2005 2000-2002 2002- 2002- 2000-2006 |
Company Profile
Our Factory
Exhibition Shows
FAQ
Q1: Are you a trading company or manufacturer?
A1: We are industrial and export combination.
Q2: If there’s any quality problem, what would you do to guarantee our rights?
Q2: We seldom get complains from our customers so far. If it really happens, we’ll be responsible for that.
Q3: How long is your delivery time?
Q3: Around 30-45 days if no stock; Around 7 days when stock available.
Q4: What’s your sample policy?
A4: Samples under $50.0 will be no charge, however the freight charge should be borne on buyer’s account.
Normal delivery time will be 4 days when stock available.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Technical Support |
---|---|
Warranty: | 1 Year |
Car Make: | FOR LANCIA |
Samples: |
US$ 15/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do belt tensioners enhance the overall efficiency and lifespan of belts in various applications?
Belt tensioners play a crucial role in enhancing the overall efficiency and lifespan of belts in various applications. They are designed to maintain proper tension in the belt, ensuring optimal power transmission, minimizing slippage, and reducing wear. Here’s a detailed explanation of how belt tensioners enhance efficiency and lifespan:
- Optimal Tension:
- Compensating for Belt Stretch:
- Reduced Slippage:
- Improved Belt Life:
- Reduced Maintenance:
- Noise and Vibration Reduction:
Belt tensioners are responsible for maintaining the correct tension in the belt. Proper tension is essential for efficient power transmission and preventing belt slippage. By applying the right amount of tension, belt tensioners ensure that the belt remains securely engaged with the pulleys, allowing for efficient transfer of power. This optimal tension minimizes energy losses, improves system efficiency, and reduces the risk of premature belt wear or failure due to inadequate tension.
Belts can stretch over time due to various factors such as normal wear, temperature changes, or load variations. Belt tensioners are designed to compensate for belt stretch by automatically adjusting the tension as needed. This feature helps maintain consistent belt tension and ensures proper power transmission, even as the belt elongates over its service life. By compensating for belt stretch, tensioners prevent slack in the belt, reduce the risk of belt jumping or misalignment, and extend the lifespan of the belt.
Slippage between the belt and the pulleys can lead to power loss, decreased efficiency, and accelerated belt wear. Belt tensioners help reduce slippage by maintaining the appropriate tension in the belt. The tensioner applies sufficient force to keep the belt tightly engaged with the pulleys, preventing slip under normal operating conditions. This enhanced grip improves power transmission efficiency, ensures accurate timing in timing belt applications, and minimizes the risk of belt-related issues caused by slippage.
Proper tension and reduced slippage provided by belt tensioners contribute to an extended lifespan of belts. By maintaining the correct tension, tensioners minimize the stress and strain on the belt, reducing the likelihood of premature wear or failure. They help distribute the load evenly across the belt, reducing localized wear and increasing the overall durability of the belt. Additionally, by preventing belt slippage, tensioners minimize the frictional forces that can cause heat buildup and accelerated belt degradation. This results in improved belt life and reduced maintenance costs.
Belt tensioners help reduce the need for frequent belt adjustments and maintenance. With a properly tensioned belt, the risk of belt-related issues such as misalignment, excessive wear, or premature failure is minimized. This reduces the frequency of belt replacements or adjustments, resulting in reduced maintenance downtime and costs. Belt tensioners also contribute to overall system reliability by ensuring consistent performance, reducing the need for frequent manual interventions or re-tensioning.
Improper tension or slippage in belts can lead to excessive noise and vibrations in the system. Belt tensioners help mitigate these issues by maintaining the correct tension and reducing slippage. By ensuring proper belt engagement, tensioners minimize noise generation and vibration levels, enhancing the overall comfort and performance of the system.
In summary, belt tensioners enhance the overall efficiency and lifespan of belts by maintaining optimal tension, compensating for belt stretch, reducing slippage, improving belt life, reducing maintenance needs, and minimizing noise and vibrations. By ensuring proper tension and reducing wear, belt tensioners contribute to efficient power transmission, extended belt life, and improved reliability of belt-driven systems in various applications.
How do innovations and advancements in belt tensioner technology impact their use?
Innovations and advancements in belt tensioner technology have a significant impact on their use, enhancing performance, reliability, and versatility. These advancements introduce new features, improve functionality, and address specific challenges associated with belt-driven systems. Here’s a detailed explanation of how innovations and advancements in belt tensioner technology impact their use:
- Improved Tensioning Mechanisms:
- Enhanced Durability:
- Increased Compatibility:
- Noise and Vibration Reduction:
- Advanced Monitoring and Diagnostic Capabilities:
- Integration with System Controls:
New tensioning mechanisms and designs have been developed to provide more precise and efficient tension control. Innovations such as automatic tensioners or self-adjusting tensioners utilize advanced mechanisms that can continuously monitor and adjust the tension in real-time. This improves the overall performance and reliability of belt-driven systems, as the tension can be accurately maintained even under varying loads and operating conditions.
Advancements in materials and manufacturing techniques have contributed to the development of more durable belt tensioners. High-strength alloys, advanced polymers, and specialized coatings are used to increase the resistance to wear, corrosion, and fatigue. These improvements extend the service life of belt tensioners, reducing the frequency of maintenance and replacement and improving the overall reliability of belt-driven systems.
Innovations in belt tensioner technology have led to increased compatibility with a wide range of belt drive systems. Manufacturers have developed adjustable tensioners that can accommodate different belt widths, profiles, and types. This versatility allows for easier integration and replacement of tensioners in various industrial or automotive applications, reducing the need for custom solutions and simplifying maintenance and repairs.
New technologies and designs have been introduced to minimize noise and vibration generated by belt tensioners. Innovative damping materials, improved bearing systems, and optimized geometries help reduce noise and vibration levels, resulting in quieter and smoother operation. This is particularly beneficial in applications where noise reduction and operator comfort are essential.
Advancements in belt tensioner technology have facilitated the integration of monitoring and diagnostic capabilities. Smart tensioners equipped with sensors and connectivity features can provide real-time data on tension levels, temperature, and other operating parameters. This enables predictive maintenance, early fault detection, and optimized performance. By leveraging data-driven insights, operators can make informed decisions, improve system efficiency, and prevent unexpected failures.
Innovative belt tensioner technologies can be integrated with system controls and automation platforms. This allows for seamless integration into larger control systems, enabling automated tension adjustments, synchronization with other components, and coordinated operation. The integration of belt tensioners with system controls enhances system performance, efficiency, and overall productivity.
In summary, innovations and advancements in belt tensioner technology have a significant impact on their use. These advancements improve tensioning mechanisms, enhance durability, increase compatibility, reduce noise and vibration, enable advanced monitoring and diagnostics, and facilitate integration with system controls. By incorporating these innovations, belt tensioners offer improved performance, reliability, and versatility, leading to enhanced efficiency and reduced maintenance requirements in various industrial and automotive applications.
Can you explain the importance of proper belt tensioning in machinery and automotive applications?
Proper belt tensioning is of utmost importance in machinery and automotive applications as it directly affects the performance, efficiency, and reliability of belt-driven systems. Here’s a detailed explanation of the importance of proper belt tensioning:
- Power Transmission Efficiency:
- Belt Life and Reliability:
- Reduced Noise and Vibration:
- Optimal Load Distribution:
- Improved Safety:
Proper belt tensioning ensures efficient power transmission from the driving pulley to the driven pulley. When a belt is under-tensioned, it can slip on the pulleys, resulting in a loss of power and reduced efficiency. On the other hand, over-tensioning can cause excessive friction, increased wear, and unnecessary strain on the components. By maintaining the optimal tension, the belt can effectively transfer power without slipping, maximizing the overall efficiency of the machinery or vehicle.
Correct belt tensioning significantly impacts the lifespan and reliability of the belt itself. Insufficient tension can lead to belt slippage, which causes wear and can result in the premature failure of the belt. Conversely, excessive tension can accelerate wear, increase stress on the belt, and cause it to stretch or deform over time. By maintaining the proper tension, the belt experiences less wear and fatigue, leading to a longer service life and improved reliability.
Improper belt tensioning can contribute to excessive noise and vibration in machinery and automotive systems. When a belt is either under-tensioned or over-tensioned, it can cause vibrations that propagate through the system, leading to noise and discomfort. Proper tensioning helps to minimize belt vibrations, ensuring smoother operation and reducing noise levels, which is particularly important in applications where noise reduction is desired, such as in automotive interiors or precision machinery.
The correct tension in a belt allows for the proper distribution of the load across the belt and the pulleys. Insufficient tension can result in uneven load distribution, causing localized stress on certain sections of the belt and pulleys. This can lead to accelerated wear and potential failure of the system. Proper tensioning ensures that the load is evenly distributed, minimizing stress concentrations and promoting balanced wear, thereby improving the longevity and performance of the belt drive system.
Proper belt tensioning is crucial for maintaining safe operation in machinery and automotive applications. Inadequate tension can lead to unexpected belt slippage, which can result in sudden loss of power, reduced braking effectiveness, or compromised operation of auxiliary systems. On the other hand, excessive tension can generate excessive heat, leading to belt degradation or even catastrophic failure. By ensuring the correct tension, the risk of these safety hazards is minimized, enhancing the overall safety of the equipment or vehicle.
In conclusion, proper belt tensioning is essential in machinery and automotive applications to ensure efficient power transmission, prolong belt life, reduce noise and vibration, achieve optimal load distribution, and enhance safety. Following manufacturer guidelines and regularly inspecting and adjusting the belt tension can help maintain the desired tension levels and maximize the performance and reliability of belt-driven systems.
editor by CX 2024-05-10
China Good quality Good Price Auto Spare Parts Car Engine Accessories Timing Belt Tensioner with Tensioner Pulley OEM 7700108117 8200244615 8200585576 for Dacia Logan 1.6L broken axle on car
Product Description
Product Description
Good Price Auto Spare Parts Car Engine Accessories Timing Belt Tensioner with Tensioner Pulley OEM 775718117 82
DACIA :
DACIA : 82QAB
RENAULT : 775718117
RENAULT :
RENAULT :
DACIA LOGAN (LS_) 1.6 16V (LS09, LS18, LS1S, LS1V,…
DACIA LOGAN MCV (KS_) 1.6 16V (KS0L, KS0M, KS0P, KS1S)
NISSAN KUBISTAR Box (X76) 1.6 16V
RENAULT CLIO II (BB_, CB_) 1.4 16V (B/CB0L)
RENAULT CLIO II (BB_, CB_) 1.6 16V (BB01,, BB2KL, BB3G…
RENAULT CLIO III (BR0/1, CR0/1) 1.4 16V
RENAULT CLIO III Grandtour (KR0/1_) 1.4 16V
RENAULT KANGOO (KC0/1_) 1.6 16V
RENAULT KANGOO / GRAND KANGOO (KW0/1_) 1.6 16V
RENAULT KANGOO BE BOP (KW0/1_) 1.6 (KW0D)
RENAULT KANGOO Express (FC0/1_) 1.6 16V
RENAULT LAGUNA I (B56_, 556_) 1.6 16V (B568, B561)
RENAULT LAGUNA I Grandtour (K56_) 1.6 16V (K568)
RENAULT LAGUNA II (BG0/1_) 1.6 16V (BG0A, BG0L)
RENAULT LAGUNA II Grandtour (KG0/1_) 1.6 16V (KG0A, KG0L)
RENAULT LOGAN I (LS_) 1.6 (LS0L, LS09, LS1S, LS1V, LS1Y,…
RENAULT LOGAN I Estate (KS_) 1.6 (KS0L, KS0M, KS0P, KS1S)
RENAULT MEGANE I (BA0/1_) 1.4 16V (BA0D, BA1H, BA0W, BA10)
RENAULT MEGANE I (BA0/1_) 1.6 16V (BA04, BA1K, BA1V,…
RENAULT MEGANE I Cabriolet (EA0/1_) 1.4 16V (EA0D,EA1H,EA0W,EA10)
RENAULT MEGANE I Cabriolet (EA0/1_) 1.6 16V (EA04, EA0B, EA11, EA1J)
RENAULT MEGANE I Classic (LA0/1_) 1.4 16V (LA0D, LA1H, lA0W, LA10)
RENAULT MEGANE I Classic (LA0/1_) 1.6 16V (LA00, LA1J, LA1K,…
RENAULT MEGANE I Coach (DA0/1_) 1.4 16V (DA0D,DA1H,DA0W,DA10)
RENAULT MEGANE I Coach (DA0/1_) 1.6 16V (DA0B, DA04, DA11)
RENAULT MEGANE I Grandtour (KA0/1_) 1.4 16V (KA0D,KA1H,KA0W,KA10)
RENAULT MEGANE I Grandtour (KA0/1_) 1.6 16V (KA0B, KA04, KA11)
RENAULT MEGANE II (BM0/1_, CM0/1_) 1.4 16V
RENAULT MEGANE II (BM0/1_, CM0/1_) 1.6
RENAULT MEGANE II Estate (KM0/1_) 1.4
RENAULT MEGANE II Estate (KM0/1_) 1.6 16V Hi-Flex
RENAULT MEGANE II Saloon (LM0/1_) 1.4
RENAULT MEGANE II Saloon (LM0/1_) 1.6
RENAULT MEGANE III Coupe (DZ0/1_) 1.6 16V (DZ0H)
RENAULT MEGANE III Hatchback (BZ0/1_, B3_) 1.6 16V (BZ0H)
RENAULT MEGANE Scenic (JA0/1_) 1.6 16V (JA0B, JA04, JA11)
RENAULT MODUS / GRAND MODUS (F/JP0_) 1.4 (JP01, JP0J)
RENAULT SCÉNIC I MPV (JA0/1_, FA0_) 1.4 16V (JA0D,JA1H,Ja0W,JA10)
RENAULT SCÉNIC I MPV (JA0/1_, FA0_) 1.6
RENAULT SCÉNIC II (JM0/1_) 1.4 (JM0B, JM0H, JM1A)
RENAULT THALIA I (LB_) 1.4 16V
2006-
2007-
2003-
1999-2004
1998-
2005-
2571-
2001-
2008-
2009-
2001-
1997-2001
1997-2001
2001-2005
2001-2007
2007-
2007-
1999-2003
1999-2002
1999-2003
1999-2003
1999-2003
1999-2003
1999-2003
1999-2003
1999-2003
1999-2003
2003-2008
2005-2008
2003-2009
2008-2009
2003-
2005-
2008-
2008-
1998-1999
2004-
1999-2003
2001-2003
2003-2008
2000-
Company Profile
Our Factory
Exhibition Shows
FAQ
Q1: Are you a trading company or manufacturer?
A1: We are industrial and export combination.
Q2: If there’s any quality problem, what would you do to guarantee our rights?
Q2: We seldom get complains from our customers so far. If it really happens, we’ll be responsible for that.
Q3: How long is your delivery time?
Q3: Around 30-45 days if no stock; Around 7 days when stock available.
Q4: What’s your sample policy?
A4: Samples under $50.0 will be no charge, however the freight charge should be borne on buyer’s account.
Normal delivery time will be 4 days when stock available.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Technical Support |
---|---|
Warranty: | One year or 50, 000kms |
Car Make: | FOR DACIA |
Car Model: | FOR DUSTER |
Lead time: | 60-90 days |
OEM service: | Available |
Samples: |
US$ 15/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can you describe the various mounting options and installations for belt tensioners in different settings?
Mounting options and installations for belt tensioners can vary depending on the specific application and the belt-driven system’s design. Different settings may require different approaches to ensure proper alignment, tensioning, and functionality of the tensioner. Here’s a detailed description of the various mounting options and installations for belt tensioners in different settings:
- Fixed Mounting:
- Adjustable Mounting:
- Spring-Loaded Tensioners:
- Idler Pulley Tensioners:
- Hydraulic Tensioners:
- Overhead Tensioners:
- Combination Mounting:
The most common mounting option for belt tensioners is fixed mounting. In this configuration, the tensioner is rigidly attached to a stationary part of the system, such as the engine block or a structural component. Fixed mounting provides stability and ensures that the tensioner remains in a fixed position relative to the belt. It is widely used in automotive, industrial, and machinery applications.
In some applications, adjustable mounting options are preferred to accommodate variations in belt length, alignment, or tension requirements. Adjustable tensioners allow for fine-tuning of the tensioning force by enabling adjustments in the tensioner’s position. This can be achieved through slots, elongated holes, or adjustable brackets that provide flexibility in the tensioner’s placement. Adjustable mounting is beneficial when precise tension adjustment is necessary or when belt drives undergo frequent changes.
Spring-loaded tensioners are commonly used in belt-driven systems. These tensioners incorporate a spring mechanism that applies constant tension to the belt. Spring-loaded tensioners can be mounted in various configurations, including fixed or adjustable mounting. The spring mechanism compensates for belt elongation, wear, or thermal expansion, ensuring consistent tension throughout the belt’s operational life.
Idler pulley tensioners utilize an additional pulley to redirect the belt’s path and apply tension. The tensioner is typically mounted on an adjustable bracket or arm, allowing for precise positioning of the idler pulley relative to the belt. Idler pulley tensioners are often used in serpentine belt systems, where multiple accessories are driven by a single belt. Proper alignment and tensioning of the idler pulley are crucial for efficient power transmission and belt longevity.
Hydraulic tensioners employ a hydraulic cylinder or piston to apply tension to the belt. These tensioners are commonly used in applications where high tension forces or dynamic tension control is required. Hydraulic tensioners may have specific mounting requirements due to the need for hydraulic connections, such as hoses or fittings. They are often used in heavy-duty machinery, automotive engines, or other systems demanding precise tension control.
In certain settings, such as conveyor systems or overhead power transmission systems, belt tensioners may be mounted overhead. Overhead tensioners are typically suspended from a support structure, allowing the tensioner to apply tension to the belt from above. This configuration helps maximize space utilization and facilitates maintenance and belt replacement in vertically-oriented systems.
In complex belt-driven systems, a combination of mounting options may be employed. For example, a fixed tensioner may be used in one location, while an adjustable tensioner is used in another to accommodate different belt lengths or alignment requirements. Combination mounting allows for customized tensioning solutions tailored to the specific system design and operational needs.
It is important to note that the specific mounting option and installation for a belt tensioner will depend on the system’s design, space constraints, belt type, and the manufacturer’s recommendations. It is essential to follow the manufacturer’s guidelines and specifications for proper tensioner installation to ensure optimal performance and longevity of the belt-driven system.
In summary, the mounting options and installations for belt tensioners can include fixed mounting, adjustable mounting, spring-loaded tensioners, idler pulley tensioners, hydraulic tensioners, overhead tensioners, and combinations thereof. Each mounting option offers advantages and considerations depending on the application’s requirements and the specific belt-driven system’s design.
What are the typical signs of improper belt tension, and how can belt tensioners address these issues?
Improper belt tension can lead to various issues in belt-driven systems. Recognizing the signs of improper tension is crucial for identifying and addressing potential problems. Belt tensioners play a crucial role in addressing these issues by adjusting and maintaining the proper tension in the belts. Here’s a detailed explanation of the typical signs of improper belt tension and how belt tensioners can address these issues:
- Slippage:
- Excessive Wear:
- Noise and Vibration:
- Overheating:
- Premature Belt Failure:
- Reduced Power Transmission Efficiency:
Slippage occurs when the belt slips on the pulleys instead of maintaining a firm grip. It can be caused by insufficient tension. Signs of slippage include a noticeable decrease in power transmission efficiency, a burning smell from friction, or visible wear on the belt and pulleys. Belt tensioners address slippage by applying the necessary force to increase the tension, improving the grip between the belt and the pulleys and minimizing slippage.
Improper tension can cause excessive wear on belts, pulleys, and other components. Insufficient tension may lead to belt slipping, resulting in accelerated wear. On the other hand, excessive tension can cause excessive stress and strain on the belt, leading to premature wear and potential damage. Belt tensioners help address excessive wear by adjusting the tension to the manufacturer’s recommended range, ensuring proper belt engagement and minimizing wear on the belt and associated components.
Improper belt tension can contribute to increased noise and vibration levels in the system. Insufficient tension may cause belt flapping or fluttering, leading to vibrations and noise. Excessive tension can create excessive forces and induce resonance, resulting in vibrations and noise as well. Belt tensioners address these issues by maintaining the correct tension, minimizing belt movement, reducing vibrations, and lowering noise levels, resulting in smoother and quieter operation.
Inadequate belt tension can cause overheating due to increased friction between the belt and the pulleys. Overheating may manifest as excessive heat radiating from the belt or pulleys, discoloration of the belt, or even belt degradation. Belt tensioners help address overheating by maintaining the proper tension, ensuring efficient power transmission and minimizing friction, which in turn reduces heat generation and helps prevent overheating issues.
Improper tension significantly increases the risk of premature belt failure. Insufficient tension can lead to belt slippage, accelerated wear, and reduced belt lifespan. Excessive tension can cause excessive stress and fatigue, leading to belt breakage or premature damage. Belt tensioners address these issues by maintaining the correct tension, distributing the load evenly across the belt, minimizing stress, and promoting longer belt life.
Improper belt tension can result in reduced power transmission efficiency. Insufficient tension leads to belt slipping, reducing the amount of power transferred from the driving pulley to the driven pulley. Excessive tension can cause increased friction and energy losses. Belt tensioners address these issues by ensuring the proper tension, maximizing the grip between the belt and the pulleys, and optimizing power transmission efficiency.
In summary, improper belt tension can manifest through signs such as slippage, excessive wear, noise and vibration, overheating, premature belt failure, and reduced power transmission efficiency. Belt tensioners address these issues by adjusting the tension to the recommended range, minimizing slippage, reducing wear, damping vibrations, preventing overheating, promoting longer belt life, and optimizing power transmission efficiency. Regular inspection and adjustment of belt tension using appropriate tensioners are essential for maintaining optimal belt performance and preventing potential issues.
Can you explain the importance of proper belt tensioning in machinery and automotive applications?
Proper belt tensioning is of utmost importance in machinery and automotive applications as it directly affects the performance, efficiency, and reliability of belt-driven systems. Here’s a detailed explanation of the importance of proper belt tensioning:
- Power Transmission Efficiency:
- Belt Life and Reliability:
- Reduced Noise and Vibration:
- Optimal Load Distribution:
- Improved Safety:
Proper belt tensioning ensures efficient power transmission from the driving pulley to the driven pulley. When a belt is under-tensioned, it can slip on the pulleys, resulting in a loss of power and reduced efficiency. On the other hand, over-tensioning can cause excessive friction, increased wear, and unnecessary strain on the components. By maintaining the optimal tension, the belt can effectively transfer power without slipping, maximizing the overall efficiency of the machinery or vehicle.
Correct belt tensioning significantly impacts the lifespan and reliability of the belt itself. Insufficient tension can lead to belt slippage, which causes wear and can result in the premature failure of the belt. Conversely, excessive tension can accelerate wear, increase stress on the belt, and cause it to stretch or deform over time. By maintaining the proper tension, the belt experiences less wear and fatigue, leading to a longer service life and improved reliability.
Improper belt tensioning can contribute to excessive noise and vibration in machinery and automotive systems. When a belt is either under-tensioned or over-tensioned, it can cause vibrations that propagate through the system, leading to noise and discomfort. Proper tensioning helps to minimize belt vibrations, ensuring smoother operation and reducing noise levels, which is particularly important in applications where noise reduction is desired, such as in automotive interiors or precision machinery.
The correct tension in a belt allows for the proper distribution of the load across the belt and the pulleys. Insufficient tension can result in uneven load distribution, causing localized stress on certain sections of the belt and pulleys. This can lead to accelerated wear and potential failure of the system. Proper tensioning ensures that the load is evenly distributed, minimizing stress concentrations and promoting balanced wear, thereby improving the longevity and performance of the belt drive system.
Proper belt tensioning is crucial for maintaining safe operation in machinery and automotive applications. Inadequate tension can lead to unexpected belt slippage, which can result in sudden loss of power, reduced braking effectiveness, or compromised operation of auxiliary systems. On the other hand, excessive tension can generate excessive heat, leading to belt degradation or even catastrophic failure. By ensuring the correct tension, the risk of these safety hazards is minimized, enhancing the overall safety of the equipment or vehicle.
In conclusion, proper belt tensioning is essential in machinery and automotive applications to ensure efficient power transmission, prolong belt life, reduce noise and vibration, achieve optimal load distribution, and enhance safety. Following manufacturer guidelines and regularly inspecting and adjusting the belt tension can help maintain the desired tension levels and maximize the performance and reliability of belt-driven systems.
editor by CX 2024-02-17
China Standard Cheap Price Tensioning Wheel Bearing Pulley Unit 13505-67041 13505-67040 Vkm 71014 62 Tb0629b30 135050L010 531021520 for CZPT Innova Diesel 2005 wholesaler
Product Description
Quick view:
Name | Tensioning Wheel Bearing Pulley Unit 13505-67041 13505-67040 VKM 71014 62 TB0629B30 135050L571 531571520 | |||
Material | steel GCr15, 65Mn, or 55 | |||
Application car makes | Toyota Innova Diesel 2 | Kia | ||
B660-12-7 | Mazda | |||
RFC6-12-7 | Mazda | |||
F801-12-7 | Mazda | |||
FE1H-12-7 | Mazda | |||
WL01-12-7 | Mitsubishi | |||
MD315265 | VKM75 | Mitsubishi | ||
24410-26 | Mitsubishi | |||
MD169592 | VKM75 | Mitsubishi | ||
MD115976 | VKM75044 | CR5073 | F-554646 | Mitsubishi |
MD182537 | VKM75064 | CR5078 | Mitsubishi | |
MD030605 | VKM751 | Mitsubishi | ||
MD129355 | VKM75101 | CR5070 | Mitsubishi | |
23357-32040 | VKM75113 | CR5071 | F-124078 | Hyundai |
MD | Mitsubishi | |||
MD129033 | VKM75130 | CR5084 | Mitsubishi | |
24450-33571 | VKM75144 | CR5067 | Hyundai | |
23357-42571 | VKM75601 | CR5076 | F-124070 | Hyundai |
24317-42571 | VKM75612 | CR5077 | F-124052 | Hyundai |
24317-42571 | VKM75612 | CR5077 | F-124052 | Hyundai |
MD352473 | VKM75613 | CR5171 | Mitsubishi | |
MD329976 | VKM75615 | CR5172 | Mitsubishi | |
MD320174 | VKM75616 | CR5137 | Mitsubishi | |
24410-57150 | VKM75621 | CR5225 | Hyundai | |
MD356509 | VKM75625 | CR5206 | Mitsubishi | |
12810-71C02 | VKM76 | SUZUKI | ||
12810-81401- | SUZUKI | |||
12810-86501 | VKM76203 | CR5101 | SUZUKI | |
13505-87702- | S ubaru | |||
8-94472-349- 1 |
VKM79.1 | Daewoo | ||
13503-62030 | VKM81 | Toyota | ||
13503-54571 | VKM81 | Toyota | ||
13503-54030 | VKM81 | Toyota | ||
13503-10571 | VKM81201 | CR5026 | F-124073 | Toyota |
13503-1571 | VKM81203 | CR5571 | F-124089 | Toyota |
13503-11040 | VKM814 | Toyota | ||
13074-05E | Nissan | |||
13077-V7202 | VKM825 | Nissan | ||
FS01-12-730A | VKM84 | Mazda | ||
FE1H-12-730A | VKM846 | Mazda | ||
OK972-12-730 | VKM84601 | CR5055 | Kia | |
24810-33571 | VKM85 | I suzu | ||
9281571212 | CR3395 | F-22 | Fiat / Lancia | |
57119243L | VKM11107 | CR3467 | F-55571 | Audi / VW |
1112571119 | VKM23063S | CR1458 | F-220122 | Mercedes Benz |
CR3416 | PSA | |||
7784613 | CR1440P | F-123753 | Fiat / Lancia | |
CR1452P | Fiat / Lancia | |||
601257170 | CR1477 | F-220124 | Mercedes Benz | |
CR1478 | ||||
CR1480 | O pel / GM | |||
CR1480P | O pel / GM | |||
715713 | CR1481 | FORD | ||
CR1484 | Fiat / Lancia | |||
90324097 | CR1486 | F-225717 | O pel / GM | |
CR1497 | Fiat / Lancia | |||
CR1498 | Fiat / Lancia | |||
CR1499 | FORD | |||
7301662 | CR1647 | F-88019.2 | Fiat / Lancia | |
11281731220 | CR3571 | F-225569 | BMW | |
11281731838 | CR3571 | F-225633 | BMW | |
XS4Q6B217AD | CR3102 | F-143 | FORD | |
6682571419 | CR3118 | Mercedes Benz | ||
668257171 | CR3119 | Mercedes Benz | ||
9635638380 | CR3218 | F-123183.18 | R enault | |
46547564 | CR3270 | Fiat / Lancia | ||
5 | Fiat / Lancia | |||
96036288 | CR3276 | F-120676 | PSA | |
962 | PSA | |||
CR3296 | F-123788 | PSA |
Our Bearing Advantage:
1.Free Sample bearing
2.ISO certified
3.Bearing Small order accepted
4.In Stock bearing
5.OEM bearing service
6.Professional: Over 20 years manufacture bearing
7.Customized bearing, Customer’s bearing drawing or samples accepted
8.Competitive price
9.TT Payment, Paypal, Alibaba payment, Trade Assurance Order
FAQ:
Q: Can you help with my own brand?
A: Sure. We can make for your brands. We can mark your brand name and use your box’s design with the legal authority letter.
Q: How can I make an inquiry?
A: You can contact us by email, telephone, WhatsApp, , etc.
Q: How long can reply inquiry?
A: Within 24 hours.
Q: Which Service you can provide?
A: 1. Help customers to choose correct bearing
2. Professional team, make your purchase easily
Q: When are you going to deliver?
A: Sample: 5-15 business days after payment is confirmed.
Bulk order:15-60 workdays after deposit received…
Q: What’s your delivery way?
A: By sea, by air, by train, express as your need.
Q: What are your terms of delivery?
A: EXW, FOB, CFR, CIF, DAP, etc.
Q: Can you support the sample order?
A: Yes, we can supply the sample if we have parts in stock, but the customer has to pay the sample payment(according to the value of the samples) and the shipping cost.
Q: What are you going to do if there has a claim for the quality or quantity missing?
A: 1. For quality, during the warranty period, if any claim for it, we shall help customer to find out what’s the exactly problem. Using by mistake, installation problem, or poor quality? Once it’s due to the poor quality, we will arrange the new products to customers.
2. For missing quantities, there have 2 weeks for claiming the missing ones after receiving the goods. We shall help to find out where it is.
How to Prevent Timing Belt Problems
Unlike their predecessors, timing chains and timing belts are made of rubber and synchronize the opening and closing of valves in the engine. While their benefits are numerous, they are prone to wear and tear over time. Here are some tips for ensuring your timing belt lasts for many years. Listed below are some of the most common problems that you may encounter when changing your timing belt. Read on to find out how to prevent them and keep your car running at peak performance.
Timing belts are rubber
There are many advantages to using timing belts in your car. They are lightweight and reduce the strain on your vehicle’s internal components. They are also quiet when running, so you won’t have to listen to your car to know that maintenance is needed. If you’re concerned about noise, a quiet engine can help you determine whether your timing belts are broken or if you need to replace them altogether. A quiet engine can also help you notice signs of wear and tear before you do.
Regardless of material, rubber timing belts can be susceptible to stretching and breaking. They also are susceptible to high temperatures and the lubrication of motor oil, reducing their lifespan. Manufacturers have responded to this problem by creating timing belts made of engine-temperature-resistant rubber materials. The improved rubber compounds also provide greater strength and resistance to distortion. Reinforcing fibers also protect the teeth from shearing, reducing the risk of a worn-out timing belt.
While the open-ended, or spliced, types of timing belts have many advantages, they are generally unsuitable for high-speed applications. In most cases, rubber timing belts are used in high-speed machine tools and automatic doors. They are also quiet and require minimal maintenance. These characteristics make rubber timing belts a great choice for high-speed applications. You can even order custom-made timing belts for unusual applications.
Timing belts are important for the functioning of an engine. They link the camshaft and crankshaft to the crankshaft. They control the movement of valves and pistons. If a timing belt fails, it can cause major damage to the engine. If you are unsure of the benefits of rubber timing belts, consider a video on the topic. This will provide you with more information on timing belts.
They synchronize the opening and closing of the engine’s valves
During the combustion process of the engine, the valves in the cylinder head open and close. Fresh air enters the cylinder, which burns with the fuel to generate power. Exhaust escapes the engine through the exhaust valve. Each cylinder contains between 2 and 4 valves. The timing belt drives a camshaft, which rotates in a precise manner to synchronize the valve opening and closing.
A timing belt is a toothed rubber belt that connects the engine’s crankshaft to the crankshaft. Like most rubber parts, timing belts degrade over time, so it’s important to replace them at the proper intervals. Replacement intervals vary depending on the make and model of the vehicle, but they should be replaced every 60 to 90 thousand miles.
A broken timing belt will not start the engine. A timing belt driven vehicle will need to be towed to a repair shop for repairs. In the automotive industry, timing belts drive both “free running” and “interference” engines. The timing belt transfers the crankshaft’s rotation to the camshafts, which in turn actuate the valves in the intake and exhaust system. When they malfunction, the pistons can contact open valves, bending or punching them.
Timing belts also work with pistons and connecting rods to create power. Perfect timing is essential for the engine to run smoothly. The timing belt regulates both the pistons and the valves. If they are out of sync, they may not ignite properly, leading to catastrophic engine failure. When you’re looking for a replacement, look for these signs of wear.
They are lighter, quieter and more efficient than timing chains
While the initial choice was for quieter performance, variable timing has led to greater efficiency and power. While noise is a factor, the average consumer cannot tell the difference. And while timing belts are generally lighter and quieter, a chain can be more noisy than a belt, which can cause more engine damage. If you’re unsure whether you should opt for a chain or a belt, consult your owner’s manual.
A timing chain functions similar to a timing belt but is made from metal and is housed inside the engine compartment. It receives its lubrication from engine oil. Timing chains can last a long time as long as you keep them properly maintained. A timing chain is not as efficient as a timing belt, but it is more accurate, quieter and easier to maintain.
A timing belt uses teeth to time the movement of various components in an engine. When the timing belt is broken, the valves in the engine will not be in sync, leading to a loss of pressure in the combustion chamber. This can cause a plethora of engine problems and cost-increasing repairs. A timing belt is also quieter and requires less lubrication, so it is safer and quieter than a timing chain.
After the advent of variable valve timing, cars began to use a timing chain. This design improved engine performance and reduced maintenance, but it also caused a backlash as consumers were no longer interested in this kind of routine maintenance. Today, however, timing chains are making a comeback in the automotive industry. While modern chains can still be noisy, they are easier to maintain, are lighter, and last longer than their chain counterparts.
They wear out over time
Even the best drive belts will eventually wear out. The main causes of belt wear include mileage and heat. The belt bends as it passes the pulley, producing heat that hardens the rubber. When the belt slips, it increases friction, accelerating the process. A worn-out belt can be very difficult to start, causing an engine to lose fuel efficiency. To help prevent this problem, check the belt for wear and tear.
A timing belt is an engine component that connects the camshaft to the crankshaft and controls the timing of combustion. These belts are made of industrial-strength rubber, and often contain nylon-reinforced cords. Although they are meant to last, they will eventually wear out. If the timing belt fails, your engine won’t run smoothly or you could spend thousands of dollars fixing it.
A faulty timing belt can cause the valves to open too early or too late, causing poor combustion and a drop in engine performance. If the timing belt breaks, the valves may hit the pistons and cause damage. This can lead to engine breakage, which requires a new engine. To prevent this, you should replace the timing belt every couple of thousand miles. If you can’t find a reliable mechanic, it is best to seek professional help from a reputable mechanic.
Another warning sign that your timing belt needs replacing is a ticking sound coming from within your engine. This is an indication of a lower oil pressure than normal. Low oil pressure can affect the timing belt as it can cause the tensioner that holds the belt taut will lose pressure. Eventually, the belt may even break, allowing the camshafts to slip and break. Once this happens, it is time to replace the timing belt.
They can be repaired
Timing belts can be repaired. If your timing belt breaks, you can take your car to a repair shop to have it repaired or replaced. The price of a repair depends on the labor hours and how many hours it takes to do the job. A bad timing belt can ruin your engine and cause it to break down completely. If you’re unable to drive your vehicle, it may require towing and a new engine.
For most drivers, a timing belt replacement will cost about $1,000 at a dealership. Luckily, you can often get the same service for less at an independent auto repair shop. Often, a timing belt repair requires replacing the water pump, too. It makes sense to replace both at the same time. But remember that timing belts are more complicated than that. If you’re worried about the cost, you can replace the water pump along with the timing belt.
If you’re in the mood to do this repair, there are many companies that offer this service. The cost is relatively low and you’ll probably save hundreds of dollars over the course of the job. However, timing belt repair is not a simple job and must be done correctly or you could end up damaging your car engine. Therefore, it’s important to know how to repair a timing belt yourself to avoid the high price of hiring a mechanic.
When timing belts start to fail, there are a few warning signs you can listen for. A difficult start-up can be a sign that your belt needs to be replaced. Also, thick smoke coming from the tailpipe can be a sign that the timing belt needs to be changed. In addition to these symptoms, your timing belt may have a crack or broken gear teeth, which means it needs to be replaced.
China Standard Suzuki Carry Spare Parts 12810-73003 Timing Belt Pulley Bearing Jpu52-128jf434 Vkm76103 1281084000 Gt377.05 Factory Price with Great quality
Product Description
Quick view:
Name | Timing Belt Pulley Bearing 12810-73 | VKM182 | Lada (Vaz) | |
B | VKM21031 | CR1681 | F-853 | Audi / VW |
074109243A | VKM21041 | CR3123 | F-210963.1 | Audi / VW |
57109243D | VKM21045 | CR3142 | F-225766.1 | Audi / VW |
078109244F | VKM21052 | CR3129 | Audi / VW | |
036109244D | VKM21120 | CR3145 | F-231219 | Audi / VW |
036109181A | VKM21121 | CR3148 | F-231220 | Audi / VW |
038109244H | VKM21130 | CR3 | Audi / VW | |
038109244J | VKM21147 | CR3495 | F-239652 | Audi / VW |
078109244G | VKM21201 | CR1643 | F-123658 | Audi / VW |
7553565 | VKM22151 | CR1645 | F-11571.1 | Fiat / Lancia |
60811487 | VKM22153 | CR1834 | F-123650 | Alfa Romeo |
7540301 | VKM22160 | CR1668 | F-123624 | Fiat / Lancia |
60652129 | VKM22173 | CR1828 | F-123653 | Alfa Romeo |
7763644 | VKM22174 | CR1896 | F-123803 | Alfa Romeo |
6571624 | VKM22177 | CR3265 | F-231098.2 | Fiat / Lancia |
551871.3 | Fiat / Lancia | |||
4740847 | VKM22380 | CR1666 | F-220324 | Fiat / Lancia |
4740846 | VKM22385 | CR1665 | F-220323 | Fiat / Lancia |
6571304 | VKM22510 | CR1874 | F-123804 | Alfa Romeo |
5952181 | VKM22630 | CR1657 | F-45605 | Fiat / Lancia |
94057171 | VKM23120 | CR1827 | F-122124 | Fiat / Lancia |
830.46 | VKM23122 | CR3590 | F-122124.2 | P-eugeot |
830.2 | VKM23130 | CR3279 | F-122574 | P-eugeot |
2S6Q6M250AA | VKM23140 | CR3511 | F-123906.4 | Ford |
830.42 | VKM23230 | CR3410 | P-eugeot | |
21215- 1 |
Lada (Vaz) | |||
9615923380 | VKM23241 | CR1887 | F-122216 | Fiat / Lancia |
830.29 | VKM23244 | CR3.5 | Fiat / Lancia | |
VKM233 | Fiat / Lancia | |||
96FF6K254DA | VKM241.2 | Ford | ||
89FF6K254CB | VKM24104 | CR1875 | F-49229.1 | Ford |
97FF6K254DA | VKM24107 | CR3094 | F-140845.1 | Ford |
6635942 | VKM24210 | CR1862 | F-145712 | Ford |
6744307 | VKM24211 | CR1864 | F-145713 | Ford |
978M6M250AA | VKM24212 | CR31 | Ford | |
1 0571 71 | VKM24213 | CR3099 | F-233879 | Ford |
157142 | VKM24214 | CR3101 | F-231338 | Ford |
9 0571 731 | VKM25150 | CR1898 | F-218740.1 | O-pel / GM |
9128739 | VKM25152 | CR1899 | F-218741.1 | O-pel / GM |
90180131 | VKM252 | O-pel / GM | ||
90264571 | VKM25201 | CR1837 | F-22 | O-pel / GM |
636418 | VKM25202 | CR1880 | F-224963 | O-pel / GM |
94106 | O-pel / GM | |||
Y701-12-730 | VKM25210 | CR1683 | F-123806 | Mazda |
5636425 | VKM25212 | CR1801 | F-218108.4 | O-pel / GM |
636416 | VKM25213 | CR1803 | F-224966 | O-pel / GM |
924 | O-pel / GM | |||
150 | VKM26571 | CR3229 | F-123778 | R-enault |
7701349659 | VKM261 | O-pel / GM | ||
770571489 | VKM26102 | CR1866 | F-39990 | R-enault |
82 | R-enault | |||
VKM26114 | CR3226 | F-123733 | R-enault | |
77 | R-enault | |||
305 | VKM26123 | CR3231 | F-123732 | R-enault |
9110639 | VKM26125 | CR3226 | F-123733 | O-pel / GM |
77 | R-enault | |||
77 | R-enault | |||
775718626 | VKM26310 | CR3208 | F-123781 | R-enault |
VKM265 | R-enault | |||
MWM 38 | O-pel / GM | |||
7439146377 | VKM26602 | CR3362 | F-224696 | R-enault |
ETC8560 | VKM27404 | CR3325 | F-14 | Audi / VW |
57145276A | VKM31 | Audi / VW | ||
078903341J | VKM31571 | CR3124 | F-225712 | Audi / VW |
M | VKM31571 | CR3733 | Audi / VW | |
59145276 | VKM31039 | CR3469 | Audi / VW | |
57103341A | VKM31041 | CR3245 | F-228319 | Audi / VW |
074145278F | VKM31043 | CR3133 | F-231228 | Audi / VW |
5826571 | VKM31059 | CR3154 | F-23 0571 | Audi / VW |
32145276 | VKM31207 | CR3483 | F-551814 | Seat |
73501924 | VKM32 | Alfa Romeo | ||
46440604 | VKM32- 3 | Alfa Romeo | ||
6571349 | VKM32 | Alfa Romeo | ||
46441096 | VKM32015 | CR1460 | F-1238 | Fiat / Lancia |
6571427 | VKM32030 | CR1492 | Fiat / Lancia |
ZheJiang Mighty (SI Bearing)are providing deep groove ball bearing, tapered roller bearing, pillow block bearing, spherical roller bearing, angular contact ball bearing, needle bearing, self-aligning ball bearing, linear bearing, wheel hub bearing, hub unit, clutch release bearing, belt tensioner, etc.
Our Bearing Advantage:
1.Free Sample bearing
2.ISO certified
3.Bearing Small order accepted
4.In Stock bearing
5.OEM bearing service
6.Professional: Over 20 years manufacture bearing
7.Customized bearing, Customer’s bearing drawing or samples accepted
8.Competitive price
9.TT Payment, Paypal, Alibaba payment, Trade Assurance Order
FAQ:
Q: Can you help with my own brand?
A: Sure. We can make for your brands. We can mark your brand name and use your box’s design with the legal authority letter.
Q: How can I make an inquiry?
A: You can contact us by email, telephone, WhatsApp, , etc.
Q: How long can reply inquiry?
A: Within 24 hours.
Q: Which Service you can provide?
A: 1. Help customers to choose correct bearing
2. Professional team, make your purchase easily
Q: When are you going to deliver?
A: Sample: 5-15 business days after payment is confirmed.
Bulk order:15-60 workdays after deposit received…
Q: What’s your delivery way?
A: By sea, by air, by train, express as your need.
Q: What are your terms of delivery?
A: EXW, FOB, CFR, CIF, DAP, etc.
Q: Can you support the sample order?
A: Yes, we can supply the sample if we have parts in stock, but the customer has to pay the sample payment(according to the value of the samples) and the shipping cost.
Q: What are you going to do if there has a claim for the quality or quantity missing?
A: 1. For quality, during the warranty period, if any claim for it, we shall help customer to find out what’s the exactly problem. Using by mistake, installation problem, or poor quality? Once it’s due to the poor quality, we will arrange the new products to customers.
2. For missing quantities, there have 2 weeks for claiming the missing ones after receiving the goods. We shall help to find out where it is.
Tips For Replacing a Belt Tensioner
When replacing a serpentine belt or automatic tensioner, you will need a special tool. This tool has a long, flat extension handle that allows you to place a socket onto the bolt and flats on the tensioner arm. The following are some tips to follow when replacing the belt or tensioner on your vehicle. To replace your belt or tensioner, you should start by checking the tensioner’s lubrication.
Serpentine belt
If you notice that the power steering or air conditioning are not working, you should check the serpentine belt tensioner. A malfunctioning serpentine belt tensioner can lead to a host of other issues. The belt may stretch, which can be caused by several factors. Over time, serpentine belt tensioners can also get worn down. Additionally, they can have a variety of other problems, including rust or dirt in the housing.
You can replace your serpentine belt by following the instructions found on your vehicle’s manual. Some tensioners attach to the engine via a single bolt. To remove and replace the belt, remove the old unit and the retaining bolt. Locate the locking pin in the engine and place the new tensioner over it. Use a torque wrench or hand tool to tighten the bolts. When installing the new tensioner, be sure to line up the mounting bolt holes with the mounting bolts. Once the tensioner is installed, test the tension by ensuring that the gauge is above the ribs. If it slides down, it is time to replace the tensioner.
Before you begin the process of replacing your serpentine belt, be sure to park your vehicle in a level area. Turn off the engine and chock both rear wheels before starting the process. Using a diagram from your vehicle’s repair manual can make the process easier, especially if you are a beginner. You can draw it in your hand, or refer to a repair manual to find out the exact location of the tensioner pulley.
If you notice that the belt is slipping or squealing while driving, it may be time to replace the serpentine belt tensioner. A worn-out belt can cause the belt to slip and can cause power steering, air conditioning, and alternator malfunctions. You should also check the belt tensioner regularly. The motor may stall or make a loud noise. These are all signs of worn-out serpentine belt.
A serpentine belt uses less space in the engine than a V-belt. It also provides more tension for the serpentine belt, which prevents it from running hot and squealing. Serpentine belts are manufactured to last for several hundred thousand miles. They are a must-have item for your car! So be sure to keep it maintained and properly adjusted! Then, you can be sure to have your car running smoothly and safely.
If you notice any of these symptoms, you should replace your serpentine belt tensioner. A serpentine belt tensioner is a simple self-10sioning device that is mounted on the front of the engine. These devices are usually easy to replace and are not complicated to install. You can find 1 at any parts store or online. When the time comes to replace your serpentine belt, don’t hesitate to get the parts you need from a local auto part store.
Idler pulley
The idler pulley and the belt tensioner are essential components of your car’s drivetrain. If any 1 of them fails, all of them must be replaced. This is because they were manufactured at the same time and most likely have the same number of miles on them. As a result, they can all fail within a few thousand miles of each other. Here are some of the symptoms that you should look for when inspecting your idler pulley or belt tensioner.
Idler pulleys are a common part of most cars. They play a vital role in the operation of the belt system by directing the belt’s path and providing additional contact with the pulley. The idler pulley is also responsible for turning the cooling fan in an air-cooled Corvair engine. Because of these functions, idler pulleys are often replaced with idlers that differ in size.
Idler pulleys are small, 2 to 4 inches in diameter and mounted on the front of the engine block. Their purpose is to create a constant amount of tension on the drive belt. When the idler pulley is worn out, the accessory drive belt may experience excessive vibration and squealing noises. You may wish to replace it as soon as possible. You can do so at AutoZone.
A worn or damaged idler pulley will require a replacement. The belt itself will not fall off the car unless the idler pulley is damaged. A squealing sound can be a sign of a broken spring. Alternatively, a mechanic can recommend a replacement based on the condition of the idler pulley. In most cases, idler pulleys are more durable than the belts and are therefore recommended for replacement.
You can also notice that the idler pulley is slipping or causing excessive noise. Its constant rotation wears the idler pulley and reduces the tension of the belt. This causes the belt to slip and may even tear off the engine. Ultimately, this could result in stalling. And if you notice the engine belt squealing or making excessive noises, you should consider replacing it.
An idler pulley for a belt tensioner are often confused. Though both of them are used in the same application, they differ in many ways. The tensioner is the 1 that receives pressure from the belts and moves them. The idler pulley is not attached to an adjustable bolt, and it can cause unusual noises. It might even make squealing or odd noises.
Spring tensioner
A spring belt tensioner is a solution to a loose belt. It features a strong torsion spring that reduces slack. These devices are designed to fit up to 6mm wide belts. They are highly reliable and durable. They are also suitable for applications where the engine speed is often fluctuating. Here’s how you can choose the best 1 for your vehicle. The spring in the tensioner should be in the proper position to keep the belt taut and free of slippage.
The RunRight tensioner is a durable, high-quality product that uses aluminum alloy. Its elastomeric inserts rely on highly elastic natural rubber for good shape memory and durability. Spring tensioners are easy to install and maintain. They are designed for both axial and helical drives. They feature detailed technical drawings and 3-D models to help you determine the best 1 for your application. To choose a spring tensioner, visit our website.
A worn bushing in the tensioner pulley or a loose pivot arm can result in excessive noise, vibration, and premature belt failure. In addition, worn springs cannot maintain proper tension. Over time, they lose tension. The pulley arm itself can also become damaged, preventing it from rotating properly. If these problems occur, you’ll need to replace the spring tensioner. If you don’t see any signs of wear, check your mounting bracket and tensioner.
A worn pivot bushing can cause the tensioner arm to misalign, leading to excessive back and forth sway. It may also cause the tensioner to jam, which means the belt is too long or too short. If you notice excessive wobble, you should replace the spring tensioner. A faulty tensioner may also be causing excessive oscillation in the pulley. To determine if the spring tensioner is too weak or jammed, check the belt’s length by using a breaker bar or socket with a long handle ratchet.
When it’s time to replace your serpentine belt, don’t forget to replace the belt tensioner. The tensioner protects other components from premature failure. It is a relatively inexpensive repair. It should be replaced as part of a larger multi-ribbed belt. It also provides protection for other components of the drive system. In addition to its protection and performance, the tensioner is inexpensive and relatively easy to replace.
It’s vital to check the tensioner and idler pulleys to make sure the system is aligned properly. If they don’t align, the belt will slip and cause premature wear. Alternatively, the tensioner may have too much tension, overloading the shaft bearings and causing premature failure in other parts. You should also check the idler pulleys for noise as well, since these are engine-driven accessories.